
Calculation of Marginal CO2 Emissions Allowances

Operational Cost for
Hydro-Dominated Power Systems

Steffen Rebennack

Assistant Professor of Operations Research
Colorado School of Mines

Division of Economics & Business

www.rebennack.net

srebenna@mines.edu

Sustainable Energy and Atmospheric Sciences Seminars
NREL and NOAA ESRL, Boulder, CO

December 2nd, 2010



Introduction
CO2 Emission Constrained SDDP

Conclusions

Collaborators

Panos M. Pardalos

Mario V.F. Pereira

Bruno Flach

Steffen Rebennack Marginal CO2 Allowances Operational Cost 2 (46)



Introduction
CO2 Emission Constrained SDDP

Conclusions

Hydro-Thermal Power Systems
Stochastic Programming Formulation
Solution Methods

Outline

1 Introduction
Hydro-Thermal Power Systems
Stochastic Programming Formulation
Solution Methods

2 CO2 Emission Constrained SDDP

3 Conclusions

Steffen Rebennack Marginal CO2 Allowances Operational Cost 3 (46)



Introduction
CO2 Emission Constrained SDDP

Conclusions

Hydro-Thermal Power Systems
Stochastic Programming Formulation
Solution Methods

Hydro-Thermal Power Systems

Figure: Itaipu, Brazil

Figure: Coal plant

Figure: Gas plant

Steffen Rebennack Marginal CO2 Allowances Operational Cost 4 (46)



Introduction
CO2 Emission Constrained SDDP

Conclusions

Hydro-Thermal Power Systems
Stochastic Programming Formulation
Solution Methods

Water Balance

ati

uti

vt+1i

sti

∑

n∈Ui
(utn + stn)

vt+1i = vti − uti − sti +
∑

n∈Ui

(utn + stn) + ati
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The World is Uncertain!?

...linear programming methods (to) be extended to include the
case of uncertain demands for the problem of optimal allocation of
a carrier fleet to airline routes to meet an anticipated demand
distribution...

George B. Dantzig
Linear Programming under Uncertainty

Management Science, 1:3 & 4, 197–206, 1955
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What Exactly is Uncertain?

Such an energy system is subject to different uncertainties:

stochastic fuel prices,

stochastic electricity demand,

stochastic (water) inflows,

and in the liberalized market in addition also:

stochastic electricity spot prices,

stochastic CO2 prices.
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Hydro Scheduling Tradeoff

dispatch decision

use hydro

save hydro

X

rationing

spillage

X
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What is the Problem?

Problem

Decision on the power generation mix
(hydro-electric, coal/gas/diesel/bunker fired plants,
biomass, etc.) has to be made today, taking into
account the (non-linear) system characteristics.

Challenge

There is no monetary value associated with
certain (hydro) reservoir levels!?

Solution

Calculate future-cost-function associated with
(hydro) reservoir levels through (stochastic)
mid-term optimization models.
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Thermal Complement Function

ct(ut) :=min
∑

j∈J

ctjgtj +Υδt (1)

s.t.
∑

j∈J
gtj + δ1 = dt −

∑

i∈I
ρiuti (2)

g
tj
≤ gtj ≤ ḡtj , j ∈ J (3)

gtj ≥ 0, δt ≥ 0, j ∈ J. (4)
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Multi-Stage Stochastic Optimization

z :=min c1(u1) + minEω2∈Ω2

[

ct
(

ut(ωt)
)

+ . . .+

+minEωt∈Ωt

[

ct
(

ut(ωt)
)

+ . . .+

+minEωT∈ΩT

[

cT
(

uT (ωT )
)

]

. . .

]

(5)
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Multi-Stage Stochastic Optimization (cont’d)

s.t. v2i = v1i − u1i − s1i +
∑

h∈Ui

(u1h + s1h) + a1i , i ∈ I

(6)

vt+1i (ωt) = vti (ωt−1)− uti (ωt)− sti (ωt)+

+
∑

h∈Ui

(

uth(ωt) + sth(ωt)
)

+ ati (ωt), t ∈ T1, i ∈ I

(7)

u1i ≤ u1i ≤ ū1i , uti ≤ uti (ωt) ≤ ūti ,

v2i ≤ v2i ≤ v̄2i , v t+1i ≤ vt+1i (ωt) ≤ v̄t+1i ,

s1i ≤ s1i ≤ s̄1i , sti ≤ sti (ωt) ≤ s̄ti , t ∈ T1, i ∈ I, j ∈ J

(8)
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Is the “Hydro-Thermal Scheduling World” Linear?

No!

...but piecewise linear is a very good approximation!

D.D. Wolf and Y. Smeers
The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm

Management Science, 46, 1454–1465, 2000

R. Rubio-Barros, D. Ojeda-Esteybar, and A. Vargas
Energy Carrier Networks: Interactions and Integrated Operational Planning
Handbook of Networks in Power Systems, P.M. Pardalos, S. Rebennack,
M.V.F. Pereira, N. Iliadis, and A. Sorokin (ed.), Springer, to appear
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Solution Methods

Classification with respect to inflow uncertainty methodology:

1 deterministic models,

2 scenario-based methods,

3 sampling-based methods.

W. Yeh
Reservoir management and operations models: A state of the art review

Water Resources Research, 21, 1797–1818, 1985

J. Labadie
Optimal operation of multireservoir systems: State-of-the-art review

Journal of Water Resources Planning and Management, 130, 93–111, 2004
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Sampling-Based Methods

Idea

Sampling-based methods generate samples of the random space
on-the-fly and solve the resulting problems approximately.

typically Dynamic Programming methods

statistical convergence results

may possess “Curse of Dimensionality”

very popular for hydro-thermal scheduling
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Sampling-Based Methods

The major lines of research for sampling-based methods towards
hydro-thermal scheduling is driven by the methods of

Stochastic Dynamic Programming (SDP)

Stochastic Dual Dynamic Programming (SDDP)

B.F. Lamond and A. Boukhtouta
Optimizing long-term hydro-power production using markov decision processes

International Transactions in Operational Research, 3, 223–241, 1996
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Bellman Recursion: Hydro-Thermal Scheduling

zt(vt) :=minEω∈Ωt




∑

j∈J

ctjgtj (ω) + Υδt(ω) + zt+1

(
vt+1(ω)

)


 (9)

s.t.
∑

j∈J
gtj (ω) +

∑
i∈I

ρiuti(ω) + δt(ω) = dt (10)

vt+1i (ω) = vti − uti (ω)− sti(ω) +
∑

h∈Ui

(
uth(ω) + sth(ω)

)
+ ati(ω),

i ∈ I (11)

g
tj
≤ gtj (ω) ≤ ḡtj , uti ≤ uti (ω) ≤ ūti ,

v t+1i ≤ vt+1i (ω) ≤ v̄t+1i , sti ≤ sti(ω) ≤ s̄ti ,

δt(ω) ≥ 0, i ∈ I, j ∈ J. (12)
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Solution Methods

When solving the One Stage Dispatch Problem, one encounters (at
least) the following two challenges:

1 the (conditioned) distribution of ω is not known and expected
to be continuous, and

2 One Stage Dispatch Problem cannot be solved
computationally for the whole continuum of reservoir levels vt .
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Solution Methods (cont’d)

Stochastic Dynamic Programming (SDP) and Stochastic Dual
Dynamic Programming (SDDP) overcome these two challenges
in the following way:

1 These inflows are modeled as a linear autoregressive model via
a continuous Markov Process.

2 The set of reservoir levels is discretized into M values. The
function zt is then approximated either via

interpolation of the M points (in SDP), or via
extrapolation of the M points (in SDDP).
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Deterministic One-Stage Programming

zt(vt , at−1) :=min
∑

l∈L

p
l



∑

j∈J

ctjg
l
tj +Υδ

l
t + zt+1

(
vlt+1, a

l
t

)

 (13)

s.t.
∑

j∈J
gl
tj +

∑
i∈I

ρiu
l
ti + δ

l
t = dt (14)

vlt+1i = vti − ul
ti − slti +

∑
h∈Ui

(
ul
th + slth

)
+ a

l
ti , i ∈ I (15)

g
tj
≤ gl

tj ≤ ḡtj , uti ≤ ul
ti ≤ ūti ,

v t+1i ≤ vlt+1i ≤ v̄t+1i , s ti ≤ slti ≤ s̄ti ,

δ
l
t ≥ 0, i ∈ I, j ∈ J, l ∈ L, (16)
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SDDP: Expected Future Cost Extrapolation

use information of dual to underestimate future cost function

“Benders cuts”

backwards pass: z

forward Monte Carlo simulation: ẑ

stop when convergence criteria satisfied

σ̂ :=

√

1
M−1

∑

m∈M
(zm − ẑ)2. (17)
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SDDP: Strength

1 no curse of dimensionality

2 state space is discretized dynamically

3 statistical solution quality measure

M.V.F. Pereira
Optimal stochastic operations scheduling of large hydroelectric systems

International Journal of Electrical Power & Energy Systems, 11, 161–169, 1989

M.V.F. Pereira and L.M.V.G. Pinto
Multi-stage stochastic optimization applied to energy planning

Mathematical Programming, 52, 359–375, 1991
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SDDP: Extensions, Variations and Related Methods

Convergence Analysis; Philpott, Shapiro

Abridged Nested Decomposition (AND); Birge

CUtting-Plane and Partial-Sampling (CUPPS); Powell

Generalized Dual Dynamic Programming (GDDP);
Velásquez

Constructive Dual Dynamic Programming (CDDP); Read

Hybrid SDP/SDDP; Gjelsvik

SDDP is established method and state-of-the-art. It is used in
more than 30 countries spread across 5 continents.
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Introduction: Global Warming

Dr. John Marburger,
G.W. Bush’s chief scientific adviser:

It is more than 90 percent certain
that greenhouse gas emissions to
blame for rising global temperatures.

BBC News, September 14, 2007
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Emissions: New Challenges

Emission Quotas: Policy Makers

1 How to define a meaningful
quota level for an energy
system?

2 What are the effects (economic
+ environmental) of such a
quota?

3 What are the operational

consequences?

Emission Markets: Utilities

4 How to optimize with respect
to stochastic CO2 prices?

5 Can we predict stochastic CO2
prices?

6 How to deal with the
correlation of the hydro-system,
fuel prices and CO2 prices?
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prices?

6 How to deal with the
correlation of the hydro-system,
fuel prices and CO2 prices?
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Least-Cost Hydro-Thermal Scheduling

Considering a “closed system” for CO2 emissions

No trading of emissions possible

Given CO2 emission quota; penalty fee has to be paid if quota
is exceeded

CO2 emissions allowances are issued per term to avoid
random anomalies

(All market participants are price takers)
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CO2 Allowances Modeling

The CO2 allowances can then be modeled as follows

∑

t|y

∑

j∈J
Bjgtj (ω)− fy (ω) ≤ ECO2

y , y ∈ Yg

where y ∈ Yg ⊆ T is the set of stages when the CO2 allowances
are issued.

SDDP?

Does not work in a ‘’one-stage” framework of SDP/SDDP.
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CO2 Emission Allowances Modeling via Reservoirs

ECO2
y ft

∑

j∈J

Bjgtj

et+1 = et −
∑

j∈J
Bjgtj + ft , t ∈ T \ Yg (18)

et+1 = ẽt −
∑

j∈J
Bjgtj + ft + E

CO2

t , t ∈ Yg (19)

et+1 ≥ 0, ft ≥ 0, t ∈ T, (20)

with

ẽt :=

{
0, if the emissions expire
et , if the emissions do not expire

, t ∈ Yg (21)
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Future Cost Function Cuts

Evaluating function zt at a specific point νnt , e
n
t and ant−1 leads to

a function value zt(ν
n
t , e

n
t , a

n
t−1) ∈ R.

Function zt is convex in νnt , e
n
t and ant−1.

If we know also the slopes γνtn, γ
e
tn and γatn of zt at this point ν

n
t ,

ent and ant−1, then we can extrapolate the function zt .
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Future Cost Function Cuts

Hence, we can underestimate the function zt via the (linear) slopes
of the points νmt , ent and ant−1 and the following linear program:

z t =minα (22)

s.t. α ≥ γνtnν
n
t + γetne

n
t + γatna

n
t−1 + γctn, n ∈ N (23)

where n ∈ N = {1, . . . ,N} denoted the n-th linear segment of the
convex underestimation and γctn is the corresponding constant
term.
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Famework

System:

Standard laptop

XPRESS Mosel, XPRESS-MP version 20.00
≈ 5000 lines (including comments)
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Case Study: Guatemala

One hydro reservoir with a water storage capacity of 440 hm3 and
an installed capacity of 275 MW.

Table: Thermal plants considered for the Guatemala power system

Number of Plants 1 3 1 18 3

Cumulative Capacity [MW] 24.0 120.4 41.4 729.8 91.5

Fuel Type 1 1 2 2 2

Cost [$/MWh] 129.9 132.0 61.6 67.1 68.7

CO2 Emission [kg/MWh] 625.0 635.2 544.1 593.5 607.3

Number of Plants 1 1 3 10

Cumulative Capacity [MW] 132.4 13.0 58.0 227.0

Fuel Type 3 3 4 5

Cost [$/MWh] 41.2 45.9 2.7 1.0

CO2 Emission [kg/MWh] 1001.0 1115.4 0 0

Fuel Type 1: Diesel, 2: Bunker, 3: Coal, 4: GEO, 5: Co-generationSteffen Rebennack Marginal CO2 Allowances Operational Cost 33 (46)
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Annual CO2 Emissions

Emission Quota Levels [Million tons CO2]
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Annual Operational Cost

Emission Quota Levels [Million tons CO2]
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Yearly Generation Mix

Emission Quota Levels [Million tons CO2]
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Monthly Dispatching
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Figure: Monthly dispatching decisions for the quota free case
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Monthly Dispatching (cont’d)
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Figure: Monthly dispatching decisions with quota of 3.40 Million tons;
relative to quota free case monthly difference in electricity
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Monthly Dispatching (cont’d)
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Figure: Monthly dispatching decisions with quota of 3.80 Million tons;
relative to quota free case monthly difference in electricity
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Average Electricity Marginal Prices
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Average CO2 Emission Allowance Marginal Prices
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Conclusions

1 Meaningful quota levels. X

2 Effects of quota. X

3 Operational consequences. X

Main Contribution

Modeling of CO2 emission quota respecting the stage
decomposition framework of SDDP

S. Rebennack, B. Flach, M.V.F. Pereira, and P.M. Pardalos
Hydro-Thermal Scheduling under CO2 Emission Constraints

revisions at IEEE Transactions on Power Systems
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Future Work

1 Application to Optimal Expansion Planning (ongoing).

2 Clustering Techniques for the electricity spot prices and CO2
emission allowance market prices (ongoing).

3 Incorporation of risk measures in the models.

4 Extension to non-linear models.
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Conference

SEA2011 - 10th International Symposium on
Experiential Algorithms

Chania, Creete, Greece

Panos M. Pardalos and Steffen Rebennack

Important Dates:

Full Paper Submission Deadline: January 21st, 2011

Opening Cocktail: May 4th, 2011

Conference: May 5-7th, 2011

Steffen Rebennack Marginal CO2 Allowances Operational Cost 45 (46)



Introduction
CO2 Emission Constrained SDDP

Conclusions

Conclusions
Future Work
Discussion

The END!

Questions, Comments,

Suggestions?
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